Refine Your Search

Topic

Search Results

Technical Paper

A Theoretical Investigation of the Combustion of PRF90 under the Flexible Cylinder Engine Mode

2017-03-28
2017-01-1027
On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
Technical Paper

Numerical Study of the RCCI Combustion Processes Fuelled with Methanol, Ethanol, n-Butanol and Diesel

2016-04-05
2016-01-0777
In the current, numerical study RCCI combustion and emission characteristics using various fuel strategies are investigated, including methanol, ethanol, n-butanol and gasoline as the low reactivity fuel, and diesel fuel as the high reactivity fuel. A reduced Primary Reference Fuel (PRF)-alcohol chemical kinetic mechanism was coupled with a computational fluid dynamic (CFD) code to predict RCCI combustion under various operating conditions. The results show that a higher quantity of diesel was required to maintain the same combustion phasing with alcohol-diesel fuel blends, and the combustion durations and pressure rise rates of methanol-diesel (MD) and ethanol-diesel (ED) cases were much shorter and higher than those of gasoline-diesel (GD) and n-butanol-diesel (nBD) cases. The simulations also investigated the sensitivities of the direct injection strategies, intake temperature and premixed fuel ratio on RCCI combustion phasing control.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Technical Paper

Using Mass Spectrometry to Detect Ethanol and Acetaldehyde Emissions from a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline Blends

2011-04-12
2011-01-1159
Ethanol and acetaldehyde emissions from a direct ignition spark ignition were measured using mass spectrometry. Previous methods focused on eliminating or minimizing interference from exhaust species with identical atomic mass and fragment ions created in ionization process. This paper describes a new technique which exploits the fragment ions from ethanol and acetaldehyde. A survey of mass spectra of all major species of exhaust gas was conducted. It was found that ethanol contributes most ions in mass number 31 and that no other gas species produces ions at this mass number. Acetaldehyde detection suffers more interference. Nevertheless, it was estimated that detection at mass number 43 is possible with 10% error from 2-methylbutane. This new technique was validated in an engine experiment. By running the engine with pure gasoline and E85, the validity of the technique can be checked.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
Technical Paper

An Investigation of Different Combustion Chamber Configuration, Intake Temperature, and Coolant Temperature in a HCCI Optical Engine

2011-08-30
2011-01-1765
The influence of different combustion chamber configuration, intake temperature, and coolant temperature on HCCI combustion processes were investigated in a single-cylinder optical engine. Two-dimensional images of the chemiluminescence were captured using an intensified CCD camera in order to understand the spatial distribution of the combustion. N-heptane was used as the test fuel. Three combustion chamber geometries with different squish lip, salient, orthogonal, reentrant shape, referred as V-type, H-type, and A-type respectively, were used in this study. Intake temperature was set to 65°C and 95°C, while coolant temperature was set to 85°C. The experimental data consisting of the in-cylinder pressure, heat release rate, chemiluminescence images all indicated that the different combustion chamber geometries result in different turbulence intensity in the combustion chamber, and thus affect the auto-ignition timing, chemiluminescence intensity, and combustion processes.
Technical Paper

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants

2012-04-16
2012-01-0134
This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

The Design and Optimized Combination of Combustion Modesover Full-Load Range in a Multi-cylinder Light-duty Engine

2013-10-14
2013-01-2623
In order to achieve high efficiency and clean combustion indiesel engines, many advanced combustion concepts have been developed to simultaneously reduce NOx and soot emissions with high efficiency. However, the benefits of these combustion modes are limited to low loads because the energy release ratesaretoo fast at high loads. Recently, Dual-fuel highly premixed charge combustion (HPCC) strategies with the port injection of gasoline and direct injection of diesel have demonstrated advantages in terms of extending the operating range by the flexible control of fuel chemical reactivity and charge stratification. However, the extension to high-load in a turbocharged multi-cylinder diesel engine with the HPCC is a critical challenge due to excessive pressure rise rates. Mean while it suffers from the excessive of CO/HC emissions at low loads.
Technical Paper

Experimental and Modeling Study of Biodiesel Surrogates Combustion in a CI Engine

2013-04-08
2013-01-1130
This work concerns the oxidation of biodiesel surrogates in a CI engine. An experimental study has been carried out in a single-cylinder common-rail CI engine with soybean biodiesel and two biodiesel surrogates containing neat methyl decanoate and methyl decanoate/n-heptane blends. Tests have been conducted with various intake oxygen concentrations ranging from 21% to approximately 9% at intake temperatures of 25°C and 50°C. The results showed that the ignition delay and smoke emissions of neat methyl decanoate were closer to that of soybean biodiesel as compared with methyl decanoate/n-heptane blends. A reduced chemical kinetic mechanism for the oxidation of methyl decanoate has been developed and applied to model internal combustion engines. A KIVA code, coupled with the Chemkin chemistry solver, was used as the computational platforms. The effects of various intake oxygen concentrations on the in-cylinder emissions of OH and soot were discussed.
Technical Paper

Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels

2005-10-24
2005-01-3730
The effects of cooled EGR on combustion and emission characteristics in HCCI operation region was investigated on a single-cylinder diesel engine, which is fitted with port injection of DME and methanol. The results indicate that EGR rate can enlarge controlled HCCI operating region, but it has little effect on the maximum load of HCCI engine fuelled with DME/methanol dual-fuels. With the increase of EGR rate, the main combustion ignition timing (MCIT) delays, the main combustion duration (MCD) prolongs, and the peak cylinder pressure and the peak rate of heat release decreases. Compared with EGR, DME percentage has an opposite effect on HCCI combustion characteristics. The increase of indicated thermal efficiency is a combined effect of EGR rate and DME percentage. Both HC and CO emissions ascend with EGR rate increasing, and decrease with DME percentage increasing. In normal combustion, NOX emissions are near zero.
Technical Paper

Characteristics of HCCI Engine Operating in the Negative-Valve-Overlap Mode

2005-05-11
2005-01-2133
Characteristics of un-throttled HCCI engine using negative valve overlap were examined under steady state and step-load change operations. The analysis employed a combined heat release analysis of the pressure data and a cycle simulation with a 1D gas exchange model to extract the residual fraction and the compression temperature from the experimental data. The residual gas fraction decreased with increase in engine load; the compression temperature decreased correspondingly. Substantial pumping loss attributed to the heat transfer in the re-compression process and the gas exchange friction was observed. At “optimum” setting of the combustion phasing, the GIMEP was not sensitive to the cycle-to-cycle combustion phasing variation. Large step high-to-low change in load was found to be stable. The reverse, however, had combustion failure in the first cycle due to unfavorable compression temperature and residual gas fraction.
Technical Paper

Simulating the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for Dimethyl Ether (DME) and Methane Dual Fuel

2004-10-25
2004-01-2951
With a zero-dimensional detailed chemical kinetic model, a numerical study was carried out to investigate the chemical reaction phenomena encountered in the homogenous charge compression ignition process of dimethyl ether (DME) and methane dual fuel. The results show that the DME/methane dual fuel elementary reactions affect each other. The low temperature reaction (LTR) of DME is inhibited, the second molecular oxygen addition of DME is restrained, and β -scission plays a dominant role in DME oxidation. Hydrogen peroxide (H2O2) is controlled by DME oxidation and almost has no correlation with methane oxidation. The rich H2O2 concentration makes methane oxidation occurs at low initial temperature. Most of the formaldehyde (CH2O) is produced from H-abstraction of methoxy (CH3O) rather than from LTR of the DME. However, the heat release of methane oxidation promotes the hot flame reactions of DME which make the reactions with high activation energy occur.
Technical Paper

The Effect of PRF Fuel Octane Number on HCCI Operation

2004-10-25
2004-01-2992
By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain a PRF fuel with octane rating between 0 and 100. The influence of PRF fuel’s octane number on the combustion characteristics, performance and emissions character of homogeneous charge compression ignition (HCCI) engine was investigated. The experiments were carried out in a single cylinder direct injection diesel engine. The test results show that, with the increase of the octane number, the ignition timing delayed, the combustion rate decreased, and the cylinder pressure decreased. The HCCI combustion can be controlled and then extending the HCCI operating range by burning different octane number fuel at different engine mode, which engine burns low octane number fuel at low load mode and large octane number fuel at large load mode. There exists an optimum octane number that achieves the highest indicated thermal efficiency at different engine load.
Technical Paper

Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel

2004-10-25
2004-01-2993
Homogeneous charge compression ignition (HCCI) is considered as a high efficient and clean combustion technology for I.C. engines. Methanol is a potential fuel for HCCI combustion. In this research, a single cylinder diesel engine was applied to HCCI operation. Methanol and dimethyl ether (DME) were fueled to the engine by fuel injection system with an electric controlled port in dual fuel mode. The results show that the stable HCCI operation of DME/methanol can be obtained over a quite broad speed and load region. And compared with higher speeds, the load region is even wider at low engine speed. E.g., at the engine speed of 1000 r/min, the maximum indicated mean effective pressure(IMEP) can reach 0.77 MPa, while at 2000r/min it is 0.53 MPa. Both DME and methanol influence HCCI combustion strongly, and by regulating DME/methanol proportions the HCCI combustion process could be controlled effectively.
Technical Paper

Experimental Study on the Effects of EGR and Octane Number of PRF Fuel on Combustion and Emission Characteristics of HCCI Engines

2005-04-11
2005-01-0174
The effects of Exhaust Gas Recirculation (EGR) and octane number of PRF fuel on combustion and emission characteristics in HCCI operation were investigated. The results show that EGR could delay the ignition timing, slow down the combustion reaction rate, reduce the pressure and average temperature in cylinder and extend the operation region into large load mode. With the increase of the fuel/air equivalence ratio or the fuel octane number (ON), the effect of EGR on combustion efficiency improves. With the increase of EGR rate, the combustion efficiency decreases. The optimum indicated thermal efficiency of different octane number fuels appears in the region of high EGR rate and large fuel/air equivalence ratio, which is next to the boundary of knocking. In the region of high EGR rate, HC emissions rise up sharply as the EGR rate increases. With the increase of octane number, this tendency becomes more obvious.
Technical Paper

Effects on Charge Non-Uniformity on Diesel Heat Release Analysis

1986-10-01
861568
A new model that includes the effects of spatial non-uniformity for the heat release analysis of internal combustion engine data has been formulated. The model has a form similar to the simple single zone thermodynamic models if two effective values of the ratio of specific heats T are defined. These values, denoted by γV and γH in the model, are weighted spatial average values of Y, and are dependent on the structure of the flame. These values have been evaluated using a three-dimensional numerical simulation of diesel combustion. Then the model is applied to the heat release analysis of diesel combustion data from a Rapid Compression Machine. The results show that the calculated cumulative net heat release is significantly higher (17% in this case) than that calculated using a single zone model.
Technical Paper

Intake Valve Thermal Behavior During Steady-State and Transient Engine Operation

1999-10-25
1999-01-3643
Intake valve thermal behavior was observed across a wide range of operating conditions while running an engine on both propane and gasoline. Compared to the gaseous fuel, the liquid fuel operation has cooler valve temperatures (∼50-100C difference) and there is significant temperature gradient across the valve surface due to liquid fuel impinging on the front quadrant of the valve. The valve warm-up time is largely determined by the effective thermal inertia of the valve (∼valve body plus 1/3 of stem mass) and the thermal resistance to the seat. The valve is heated up by the combustion chamber; the dominant cooling paths are through the seat contact and the liquid fuel evaporation. Just after starting, very little fuel evaporates from the cold valve until there is a substantial increase in valve temperature in a period of approximately 10-20 seconds.
Technical Paper

Natural Flame Luminosity and Emission Spectra of Diesel Spray Flame under Oxygen-Enriched Condition in an Optical Constant Volume Vessel

2018-09-10
2018-01-1781
The application of oxygen-enriched or oxy-fuel combustion coupled with carbon capture and storage technology has zero carbon dioxide emission potential in the boiler and gas turbine of the power plant. However, the oxygen-enriched combustion with high oxygen level has few studies in internal combustion engines. The fundamental issues and challenges of high oxygen level are the great differences in the physical properties and chemical effects compared with the combustion in air condition. As a consequence, the diesel spray combustion characteristics at high oxygen level were investigated in an optical constant volume vessel. The oxygen volume fraction of tested gas was from 21% to 70%, buffered with argon. The high-speed color camera was used to record the natural flame luminosity.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
X